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Abstract

We present a hybrid atomistic–continuum method for multiscale simulations of dense fluids. In this method, the

atomistic part is described using a molecular dynamics description, while the continuum flow is described by a finite

volume discretization of the incompressible Navier–Stokes equations. The two descriptions are combined in a domain

decomposition formulation using the Schwarz alternating method. A novel method has been proposed in order to

impose non-periodic velocity boundary conditions from the continuum to the atomistic domain, based on an effective

boundary potential, consistent body forces, a particle insertion algorithm and specular walls. The extraction of velocity

boundary conditions for the continuum from the atomistic domain is formulated by taking into account the associated

statistical errors. The advantages and drawbacks of the proposed Schwarz decomposition method as compared to

related flux-based schemes are discussed. The efficiency and applicability of the method is demonstrated by considering

hybrid and full molecular dynamics simulations of the flow of a Lennard–Jones fluid past a carbon nanotube.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The study of nanoscale fluid mechanics [1] is important for the understanding and development of nano-

scale devices such as biosensors operating in aqueous environments. The behaviour of biosensors can be

studied through a canonical problem involving carbon nanotubes (CNT) immersed in a liquid environment

[2,3]. The simulation of liquid-nanotube interactions is often performed using atomistic methods such as
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classical molecular dynamics (MD) and direct simulation Monte-Carlo (DSMC) techniques. A number of

studies using atomistic methods has described fundamental fluid flow phenomena such as wetting [2], the

moving contact line problem [4] and the validity of the no-slip boundary condition [3]. Nanoscale flows are

often part of larger scale systems (as for example when nanofluidic channels are interfacing microfluidic

domains) and in simulations we are confronted with an inherently multiscale problem. Despite the success
of atomistic simulations, their limitations in accessible length and time scales are stringent and allow only

for the analysis of elementary systems for rather short times. To illustrate these limitations, consider that

the time step dt in a MD simulation is dictated by the fastest frequency one needs to resolve. For a simu-

lation of pure water, dt = 2 fs when models with fixed O–H bonds and H–O–H angles are used; in other

words, 500 million time steps are required for 1 ls of simulation time. With the optimistic assumption that

the execution of a single time step takes 0.1 s, a total of some 19 months of CPU time is required.

As full atomistic simulations are prohibitively expensive, hybrid atomistic–continuum simulations are

necessary in order to study large systems for reasonable times. In these hybrid multiscale simulations,
we need to address two key issues, namely:

(A1) the identification of the atomistic and continuum domains,

(A2) and the appropriate coupling of length and time scales for the two descriptions.

Significant progress has been made in solving both of these problems in the case of rarefied gas flows

[5,6]. However, for dense fluids the situation is more complex since the atomistic description involves inter-

acting particles. Two classes of coupling schemes for dense fluids have been proposed: the first one is based
on direct flux exchange [7–9] and the second one on the Schwarz alternating method [10,4]. In the context of

direct flux exchange schemes, O�Connell and Thompson [7] have coupled an atomistic system with a con-

tinuum domain where the average momentum of the overlap particles is adjusted through constrained

dynamics. Flekkøy et al. [8] have presented a hybrid model which is explicitly based on direct flux exchange

between the particle region and the continuum region. Wagner et al. [11] pursued this approach and ex-

tended it to treat unsteady flows and energy exchange, cf. also the subsequent work by Delgado-Buscalioni

and Coveney [9]. Finally, Nie et al. [12] proposed a modification of the scheme in [7] and applied it to an

impulsively started Couette flow. Hadjiconstantinou and co-workers [10] pointed out that direct flux
exchange schemes decouple length but not timescales.

Hybrid schemes have to exchange information at the interface between the different descriptions. The

difficulty when passing information from the atomistic to the continuum part is that the atomistic quantities

are inherently fluctuating. In this work, we present results where the coupling between the atomistic and

continuum descriptions involves only mean flow fields. Mesoscopic descriptions may be necessary in order

to seamlessly transfer information between fluctuations in the atomistic level and mean field quantities in

the continuum level. We show – based on recent work by Hadjiconstantinou et al. [13] – that the flux ex-

change schemes [8,9] require an excessive amount of sampling of the atomistic region in order to obtain
statistically meaningful estimates of the fluxes to the continuum. In order to circumvent these problems,

we implement the alternating Schwarz method [10,4] which iteratively finds a consistent solution in the

atomistic and continuum domain. The Schwarz method avoids the direct imposition of fluxes but ensures

nevertheless flux continuity under the assumption that the transport coefficients of the two descriptions

match in the overlap domain. In this work, in order to simulate dense fluid flows, we extend the technique

proposed in [4] to handle non-periodic systems thus broadening considerably the range of application of the

Schwarz alternating scheme.

The outline of the paper is as follows: In Section 2, we review the alternating Schwarz method in the
context of hybrid simulations of dense fluid flows. The imposition of boundary conditions from the contin-

uum domain on the atomistic domain is discussed in Section 3. The finite volume discretization of the con-

tinuum domain and the extraction of boundary conditions from the atomistic for the continuum are treated
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in Section 4. The proposed boundary model is validated in Section 5 and the overall method is applied to

the flow of liquid argon around a carbon nanotube. The paper concludes by summarizing open issues and

outlining future work.
2. Atomistic–continuum flows: the alternating Schwarz method

We consider hybrid atomistic–continuum simulations of dense fluid flows such as a liquid flow past a

carbon nanotube. We implement a domain decomposition algorithm based on the alternating Schwarz

method [14]. In this method, the flow domain X is decomposed into two overlapping regions: an atomistic

region described by molecular dynamics and a continuum region described by a finite volume discretization

of the incompressible Navier–Stokes equations. The fundamental assumption is that the atomistic and the

continuum descriptions are valid and match in the overlapping domain.
In Fig. 1, we give an example of a hybrid domain used in the present work. The atomistic and the con-

tinuum domains are denoted as XA and XC, respectively. The boundary of the continuum domain is com-

posed of an outer boundary oXC and an inner boundary CC that lies within the atomistic domain while the

atomistic domain is bounded by an outer boundary CA that lies within XC. In each iteration n, the contin-

uum velocity field unC is computed in XC with a given external boundary condition on oXC and an internal

boundary condition on Cn
C. The restriction of unC to Cn

A is then the boundary condition for the atomistic

problem in XA whose solution unA yields in turn the next continuum boundary condition Cnþ1
C . The extrac-

tion of boundary conditions from the atomistic domain and the proper enforcement of boundary condi-
tions on the atomistic domain represent major difficulties, as discussed in the following section.

The convergence of the hybrid velocity field toward an MD reference solution uMD is measured by
Fig. 1.

atomis

oXC an

close-u
enMD ¼ 1

NX

X
k2X

junk � uk;MDj
u1

; ð1Þ
where NX is the number of cells in X, n is the iteration, and u1 is the freestream velocity. The cumulative

average velocity unk for cells k 2 XA is [15]
unk ¼
PM

j¼1

PNkðtjÞ
i2k viðtjÞPM

j¼1NkðtjÞ
; ð2Þ
whereMdenotes the number of atomistic samples in iteration n,Nk(tj) is the number of particles in cellk at time

tj, and vi(tj) is the velocity of particle i at time tj. Furthermore, the rate of change of the velocity field is defined as
Schematic of a hybrid atomistic/continuum computational domain. LO denotes the size of the overlap domain between the

tic domain XA (entire shaded area) with boundary CA (dark shaded area) and the continuum domain XC with outer boundary

d inner boundary CC. The fine grid corresponds to the finite volume mesh and A is the area of a cell face. The right picture is a

p of a hybrid computational domain to study the flow of liquid argon around a carbon nanotube as used in the present work.
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dn ¼ 1

NX

X
k2X

junk � un�1
k j

u1
: ð3Þ
3. Atomistic region: molecular dynamics of non-periodic systems

The atomistic region describes parts of the flow field, where the continuum assumptions fail and an

atomistic representation is necessary in order to capture the physical properties of the system. In this work,

the atomistic region is modeled using classical molecular dynamics (MD) simulations [16]. The positions

ri = (xi,yi,zi) and velocities vi = (vx,i,vy,i,vz,i) of the particles evolve according to Newton�s equation of
motion:
o

ot
ri ¼ viðtÞ; ð4Þ

mi
o

ot
vi ¼ F i ¼ �

X
j 6¼i

rUðrijÞ; ð5Þ
where mi is the mass and Fi is the force on particle i. The interaction potential U(rij) models the physics of

the system under consideration. Here, we consider liquid argon as a Lennard–Jones fluid interacting with a
carbon nanotube. We implement an interaction potential as
UðrijÞ ¼ UAB
12�6ðrijÞ þ Umðrw; q; T Þ ð6Þ
with a two body Lennard–Jones interactions between particles of type A and B at a distance of rij
UAB
12�6ðrijÞ ¼ 4�AB

rAB

rij

� �12

� rAB

rij

� �6
" #

; ð7Þ
with energy and length parameters �AB and rAB.

The Lennard–Jones interaction parameters for the argon–argon and argon–CNT interactions are

�ArAr = 0.996 kJ mol�1, rArAr = 0.340 nm, �ArC = 0.570 kJ mol�1, and rArC = 0.340 nm, respectively. The

carbon nanotube is modeled as a rigid structure [17]. The term Um(rw;q,T) accounts for the interaction

of the atomistic region with the surrounding medium and depends on the distance to the outer boundary

of the atomistic domain rw, the local density q, and the local temperature T of the fluid and is further
described in Section 3.1. All interaction potentials are truncated for distances beyond a cutoff radius rc
of 1.0 nm. The equations of motion (4) and (5) are integrated using the leap-frog scheme [16] with a time

step dt of 5 fs. When appropriate, we report quantities in terms of reduced units, where �ArAr, rArAr, and

mAr are the energy, length, and mass units used for the non-dimensionalization. Thus, the reduced temper-

ature, density, and pressure are Tþ ¼ kBT =�ArAr; qþ ¼ qr3
ArAr; and Pþ ¼ Pr3

ArAr=�ArAr, respectively.
3.1. Effective boundary potential and force for a monatomic fluid

MD simulations are often being employed for homogeneous systems. In this case, periodic boundary

conditions are useful in minimizing boundary effects. However, in the context of the hybrid simulations

considered herein, it is necessary to impose arbitrary non-periodic boundary conditions (NPBC). These

NPBC can be imposed through a boundary model that is required to:

(A1) exert the correct mean pressure on the MD system and

(A2) minimize any kind of local disturbance (e.g., in the density or temperature fields).
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We consider the first criteria (A1) as mandatory, while the second (A2) is motivated by the attempt to

minimize the extent of the MD domain. Note that a boundary model that explicitly accounts only for the

first first criterion (A1) may still work as long as the boundary is sufficiently far away from the zone of inter-
est. To satisfy (A1), the effective force Fm on the MD system has to correspond to the mean virial part of the

system pressure PU, i.e.,
P ¼ PK þ PU ¼ kBTqn þ qn

Z rc

0

F mðrÞ dr; ð8Þ
where PK denotes the ideal part of the pressure and kB is the Boltzmann constant.
A number of boundary force models have been employed in related works on hybrid schemes for the

simulation of dense fluids [7–10,4,12]. We have implemented these models and have analyzed their advan-

tages and drawbacks. Based on this analysis we propose a novel boundary model that includes an effective

boundary potential and a specular wall allowing for a non-zero mean fluid velocity. All force expressions

are given along the outward normal n and the subscript w is omitted for clarity, i.e., r denotes the distance

to the wall.

A constant repulsive force has been proposed in O�Connell et al. [7]
F m ¼ �aPq�2=3
n ; ð9Þ
where P is the pressure of the system, and a an adjustable parameter. Flekkøy et al. [8] and Delgado-Buscal-

ioni and Coveney [9] used a weighting function w(r) that distributes (cell-wise) the mean pressure force
F = PA on the particles as
F mðriÞ ¼ � wðriÞP
j
wðrjÞ

PA: ð10Þ
In Delgado-Buscalioni and Coveney [9], a uniform weighting function wu(r) = 1 has been used while Flek-

køy et al. [8] have employed a diverging weighting function wdðrÞ ¼ 1=r � 2=rc þ r=r2c . Finally, Nie et al.
[12] have applied a diverging force at the boundary of the form
F mðrÞ ¼ �bPr
rc � r

1� ðrc � rÞ=rc
; ð11Þ
where b is an adjustable parameter. Clearly, the models based on Eq. (10) satisfy (A1) by construction and

so does the expression (9) when a ¼ 1=ðq1=3
n rcÞ. On the other hand, the pressure exerted on the system by the

force (11) is infinitely large and this model in this form is not recommended. To allow a comparison to the

other models, we include Eq. (11) in the following shifted form:
F mðrÞ ¼
�bPr rc�rb�r

1�ðrc�rb�rÞ=rc for r < rc � rb;

0; otherwise;

(
ð12Þ
where the shift rb is computed from the expression qn

R rc
rb
F mðrÞ dr ¼ P . In other hybrid simulations, Hadji-

constantinou and co-workers [10,4] considered examples where periodic boundary conditions were applica-
ble and where therefore no effective boundary potential was needed.

We propose to apply an effective boundary force that addresses (A2) by accounting for the local struc-

ture of the fluid, which for a monatomic fluid is described by the radial distribution function g(r). In this

model, we integrate the force components normal to the wall and the potential energy contributions

weighted by g(r) over the part of the cutoff sphere that lies outside of the atomistic domain, cf. Fig. 2.
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Fig. 2. Integration domains for the effective boundary force and potential (13) and (14). The force and potential contributions along z

are integrated over the shaded area using polar coordinates. The number of atoms in the infinitesimal ring element is 2pqng(r)x dx dz,

where qn is the average number density and g(r) the radial distribution function.
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The integration is performed in polar coordinates, where z is normal to the boundary and x denotes the

radial direction as:
F mðrwÞ ¼ �2pqn

Z rc

z¼rw

Z ffiffiffiffiffiffiffiffi
r2c�z2

p

x¼0

gðrÞ oU 12�6ðrÞ
or

z
r
x dx dz; ð13Þ

UmðrwÞ ¼ 2pqn

Z rc

z¼rw

Z ffiffiffiffiffiffiffiffi
r2c�z2

p

x¼0

gðrÞU 12�6ðrÞx dx dz; ð14Þ
where rc is the cutoff radius, qn is the average number density, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
, and rw the distance to CA. The

Fm(r) and Um(r) for a Lennard–Jones fluid can be obtained by either using a readily available parametri-

zation of g(r) as proposed by Matteoli and Ali Mansoori [18] and performing the integration in (13) and
(14) or by evaluating the integrals (13) and (14) explicitly in a separate simulation. In this work we have

adopted both approaches. In the Appendix A of the paper, we describe the measurement of Fm(r) and

Um(r) in an MD simulation and report low order polynomial fits describing these terms.

In Fig. 3, the different effective boundary force terms are displayed. An important feature of the force Fm

(13) is the existence of a pronounced attractive component experienced by the particles near the boundary.

All previous models (see Eqs. (9)–(12)) included only repulsive force components. This leads to the well

known layering of particles close to a wall as demonstrated in Section 5. The boundary force based on

the parametrization of g(r) from [18] is in excellent agreement with Eq. (A.1) for rw > r but closer to the
boundary, there is a significant difference. This difference can be explained by the deviation of the param-

etrized g(r) to the one observed in the simulation at the same state point (not shown). In the subsequent

simulations, we use the measured boundary force and potential described in Appendix A.

3.2. Particle reflections and insertions

A mechanism is necessary in the boundary region CA in order to handle particles leaving the domain

when imposing NPBC. It is important to realize that particles may leave the atomistic domain XA even
though a boundary force model is applied in order to account for the interaction of the atomistic region

with the surrounding medium. Thus, without further constraints, particles will constantly leave the atom-
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Fig. 3. Effective boundary force Fm on a Lennard–Jones particle located at a distance rw from the boundary of an atomistic system of

density q = 1.0 g cm�3 and at temperature T = 215 K. Displayed are the constant force from Eq. (9) with a = 0.404 (——), the shifted

diverging force (12) (b = 1) (– –), Eq. (13) evaluated with g(r) from [18] (� � �), and the force as measured in a simulation (+).
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istic region across the outer boundary CA. Since our model simulates a steady, incompressible flow, the

total number of particles in the atomistic system needs to be overall constant. In order to preserve the num-
ber of particles in the system, the outer boundary CA is modeled as an impermeable wall. This specifies the

density in XA to a constant value and ensures mass conservation. Particles that strike the wall are specularly

reflected, i.e., their velocity components normal to the wall are reversed while the other components are not

altered by the impact. A specular wall acts as a plane of symmetry and the rebounded particles can be

looked at as if they had come from an imaginary particle reservoir on the other side of the wall [19].

The boundary model equation (13) takes the mean effect of this imaginary particle reservoir into account

and prevents density perturbations close to the wall. The symmetric extension of the system by the specular

wall is thus justified and the ideal part of the pressure PK equals kBTqn at the boundary. We note that the
instantaneous momentum of the atomistic system is altered by every single particle reflection, however, the

average momentum remains constant.

In case a mean flow is imposed across CA, the specular walls move with the local cell velocity, cf. Fig. 4. In

other words, in every time step, the collisions of the particles with the specular walls are evaluated in a frame of

reference that moves with the local fluid velocity. At the end of the time step, the walls are reset on CA leaving

some particles outside of the computational domain. The average number of such particles amounts to the re-

quired valueofqNdtAu Æ n sinceqN is uniformanduprescribedby thebody force described inSection3.3.These
particles are collected and reintroduced into the system as described later. To find the particles that strike a
moving wall in direction x during time step n, we compute the collision time as t0 ¼ ðxn � ~xWÞ=ðux � ~vnþ1=2

x Þ,
where ~xw and ux are the initial wall position and the wall speed, and ~vnþ1=2

x is the particle velocity after the reg-

ular leap-frog position update but before a possible reflection. A particle crosses the system boundary CA if

0 6 t 0 6 dt and the new velocity and position in the x-direction are computed as
vnþ1=2
x ¼ �ð~vnþ1=2

x � uxÞ þ ux ð15Þ

and
xnþ1 ¼ xn þ t0~vnþ1=2
x þ ðdt � t0Þvnþ1=2

x ; ð16Þ

while the y- and z-components remain unchanged.



Fig. 4. Schematic representation of the boundary model for the atomistic system at an inlet face CAin
and an outlet face CAout

, cf. also

Fig. 1. The specular walls move in every time step dt with the local fluid velocity u along the face normal n, i.e., their total displacement

along x is dx = uxnxdt. The dashed arrows denote the original particle trajectories before reflection with the wall. Particles that leave the

system are reintroduced through an inlet face, cf. text.
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For the particles that have to be reintroduced, a cell face of CA is randomly chosen among those that

have a net inflow (n Æ u < 0) and with a probability proportional to the local inflow (|n Æ u|). This distribution
scheme is simple and proved to be more efficient than an alternative scheme that we tested which is based on

the instantaneous density in the inflow cells. This latter scheme was found to be inefficient as the magnitude

of the local density fluctuations is large compared to the number of particles that have to be introduced on

average.

Once a target cell face is selected, the USHERUSHER algorithm [20] is used to find a particle location with a po-

tential energy corresponding to the mean potential energy e0 in the system. The USHERUSHER algorithm performs
a steepest descent method in the energy landscape and applies appropriate heuristics to avoid computation-

ally expensive line searches. In [9], the starting positions for the steepest descent are chosen randomly in the

entire cell. Here, we choose the starting positions according to the probability that a particle would actually

enter at a distance rw from the given cell face, i.e.,
P ðrwÞ ¼ cqN

Z 0

�1
fT ððrw � xÞ=dtÞ dx ¼ dtqN

2
1þ erf

ffiffiffiffiffiffiffiffiffiffiffi
m

2kBT

r
un �

rw
dt

� �� �� �
; ð17Þ
where fT is a Maxwell distribution defined in Eq. (19), c a normalization constant, and un is the imposed

mean velocity. Additionally, we limit the search space to be of thickness Ls given by
R Ls
0
PðxÞ dx ¼ 0:99.

When the steepest descent path leads outside of the search space then the search is restarted with a new

random initial position.

The wall normal component vn of the velocity of the introduced atom is sampled from a Rayleigh

distribution [21]
fNðvnÞ ¼
m
kBT

jvnj exp �mðvn � unÞ2

2kBT

 !
; ð18Þ
and the tangential components vt are sampled from a Maxwell distribution
fT ðvtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2pkBT

r
exp �mðvt � utÞ2

2kBT

 !
: ð19Þ
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By construction, the new particle has a potential energy of e0, which implies that the total potential energy

added to the system per particle insertion is 2e0, and thus the new mean energy of the system becomes

e00 ¼ ðN þ 2Þ=ðN þ 1Þe0, where N denotes the total number of particles.

3.3. Imposition of mean velocity and thermostatting mechanism

In order to enforce the continuum velocity field uk on the cells k in CA, a body force bk is applied in every

time step to adjust the instantaneous center-of-mass velocity [3]
�vk ¼ 1=Nk

X
i2k

vi: ð20Þ
The body force is adjusted so as to yield in every time step the center of mass velocity uk as prescribed by the

continuum ð�vnþ1=2
k ¼ ukÞ. The value of the body force bnk in cell k at time ndt is found from the velocity

update formula of the leap-frog scheme [16]
�v
nþ1=2
k ¼ �v

n�1=2
k þ dt

NkmAr

f nk þ bnk
� 	

; ð21Þ
where f nk is the total force acting on the center of mass of cell k and dt is the time step. Thus, the required

body force is
bnk ¼
NkmAr

dt
uk � �v

n�1=2
k

� �
� f nk : ð22Þ
We note that this driving mechanism corresponds to the constraint dynamics algorithm introduced by
O�Connell et al. [7]. The fluid is kept at the target temperature T by a cell-wise Berendsen thermostat

[22] in the z-direction. All flows considered in the present work are homogeneous in the z-direction, the

thermostat does therefore not influence the streaming velocities.
4. The macroscopic model

We model the continuum part of the hybrid solution in XC as a two-dimensional steady flow of an
incompressible, viscous, isothermal fluid which is described by the Navier–Stokes equations in the form [23]
r � u ¼ 0; ð23Þ

ðu � rÞu ¼ � 1

q
$p þ mDu; ð24Þ
where u and p are the velocity and pressure fields, q is the density, and m is the fluid shear viscosity. The

external velocity boundary conditions on oXC can take any admissible form, while Dirichlet boundary con-

ditions are applied on the internal boundary CC with values from the atomistic domain ujCC
¼ uAjCC

, as

described in the following section. We use the commercial flow solver STARTARCD [24] to solve Eqs. (23)

and (24) employing a second-order central difference finite volume discretization and with an equation

for the pressure derived using the SIMPLE method [25]. The velocity boundary conditions for the contin-
uum system on the internal boundary CC are extracted from the atomistic system as described below.

The only physical parameter that is explicitly needed by the continuum solver is the fluid shear viscosity.

In Rowley and Painter [26], a value for the kinematic viscosity of m = 0.8 · 10�7 m2 s�1 is reported for the

state point of the Lennard–Jones fluid considered in this work (q+ = 0.6, T+ = 1.8, m+ = 1.50). Rowley and

Painter estimate the uncertainty in m to be ±17.2% and used in their simulations a cutoff of 4r as compared
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to 2.94r in the present work. The Reynolds number based on the tube diameter D and m is Re = uxD/

m � 1.5.

4.1. Continuum boundary conditions from the atomistic system

The extraction of average values �q of a quantity q (e.g., velocity, pressure and density) from the MD

trajectories is a straightforward process [16]. However, one has to carefully consider the associated statis-

tical error Eq, which depends on the number of samples Mq used for the average as

Eq ¼ rð�qÞ=�q ¼ rðqÞ=ð
ffiffiffiffiffiffiffi
Mq

p
�qÞ, where r(q) denotes the standard deviation of q. Hadjiconstantinou et al.

[13] have given a priori estimates for the number of samples Mu, Mq, and MP needed to measure averages

of velocity, density, and pressure, respectively, in a cell of volume V
Mu ¼
kBT 0

u20

1

q0VE
2
u

; Mq ¼
jT kBT 0

VE2
q

; MP ¼ ckBT 0

P 2
0jT

1

VE2
P

; ð25Þ
where u0, q0, T0, and P0 denote the average velocity, density, temperature, and pressure, kB is the Boltz-

mann constant, c the ratio of specific heats, and jT the isothermal compressibility of the fluid. To illustrate
the implications of Eq. (25), we consider a numerical example for a hybrid computational domain where the

cell volume V over which atomistic quantities are averaged is 1 nm3. We consider a flow of water at atmo-

spheric conditions (P0 = 1 bar and T0 = 293 K) and with a ratio of specific heats c = 1, an isothermal com-

pressibility of jT = 48.95 · 10�6 bar�1, and a mean velocity u0 = 100 m s�1. Then, to limit the fractional

errors Eu, Eq, and EP to 5% the number of required (statistically independent) samples amounts to

Mu � 102, Mq � 1, and MP � 108. If the samples are time correlated, the number of samples that are effec-

tively needed increases to M e
q ¼ 2sqMq, where sq is the integrated autocorrelation time [27].

From these estimates we observe that the pressure is particularly expensive to obtain even at this modest
accuracy. In flux-based schemes where the pressure tensor is needed one either has to collect a large amount

of samples, use a larger cell size (at the cost of having a lower spatial resolution), or apply smoothing

schemes such as the thermodynamic field estimator [28]. For these reasons, in this work we favour

density-based schemes, where the pressure does not need to be computed or to be imposed directly.

On the other hand, based on the above estimates the computation of cell velocity values is not prohib-

itive. In order to verify this statement, we determine M 0
u in an equilibrium simulation of a Lennard–Jones

fluid, compare it to the a priori estimate for Mu of Eq. (25) and finally find M e
u by taking the time corre-

lation of the samples into account. We consider a fully periodic system with 1619 argon atoms placed in
a box of dimensions 5.0 · 5.0 · 4.26 nm and equilibrated at a temperature of T = 215 K. From a 10-ns long

simulation, we record the time evolution of the average velocity u ¼ 1=N
P

kvk in cells of size 0.5 · 0.5 · 4.26

nm, and extract a standard deviation (averaged over the velocity components) of ru = 51.2 m s�1. For

u0 = 100 m s�1 and a desired fractional error of Eu = 8%, this system requires M 0
u ¼ rðuÞ2=u20E2

u � 41 sam-

ples. From Eq. (25), we find Mu � 43 which is in good agreement with the measured M 0
u. The integrated

autocorrelation time is found to be su = 1.25 ps corresponding to 250 time steps. Thus, in this example

the effective number of samples M e
u needed to achieve the desired accuracy amounts to

M e
u ¼ 2su=dtMu ¼ 20; 000.
The velocities on the cell faces CC are obtained from a linear interpolation between the values of the

adjacent cells. Additionally, two corrections are applied to the velocity boundary condition in order to pre-

vent (artificial) asymmetries and spurious mass sources or sinks in the continuum solution due to noise in

the MD data. First, the velocities on CC are symmetrized with respect to the x-axis. Second, the velocity

components prescribed on CC are scaled such that they satisfy the continuity constraint
Z
CC

u � n ds ¼ 0: ð26Þ
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In practice, the discrete equivalent of the integral in Eq. (26) is evaluated as the difference DJ = Jin � Jout
between the total mass in- and outflux across CC. If DJ 6¼0, the velocities on influx faces are scaled by a fac-

tor sin = 1 � DJ/(2Jin), and those on outflux faces by sout =1 + DJ/(2Jout), resulting in new total fluxes of

J 0
out ¼ Jout þ DJ=2, and J 0

in ¼ J in � DJ=2, with DJ 0 = 0. In the hybrid example given in Section 5.3, the scale

factors were always smaller than ±2%.
5. Results

We first demonstrate the validity of the proposed boundary conditions for a purely atomistic system, i.e.,

without a coupling to a continuum, for the two fundamental cases of an equilibrium and of a uniform par-

allel flow.The system consists of 1900 argon atoms (mAr = 39.948 a.m.u.) in a cubic box of edge length 5.0

nm equilibrated at a temperature of T = 215 K, corresponding to a density of q = 1.008 g cm�3 and a pres-
sure of P = 653 bar (T+ = 1.8 and q+ = 0.6, P+ = 1.55). 1

5.1. NPBC for liquid argon at equilibrium

In this section, we consider the effect of applying NPBC to a system of liquid argon in equilibrium. In

these simulations, the y- and z-directions are treated periodically, while in the x-direction, the different effec-

tive boundary forces as discussed in Section 3.1, are applied. The trajectories of the 2 ns long simulations

are stored in time intervals of 0.5 ps and are used to compute density profiles along the x-axis in 250 bins of
width 0.2 Å, cf. Fig. 5. The parameter a in the constant force Eq. (9) is chosen as a ¼ 1=ðq1=3

n rcÞ ¼ 0:404 and
the shift in Eq. (12) as rb = 0.500.

If no boundary force is applied, we observe (Fig. 5) strong density oscillations next to the boundary with

a peak at the boundary. The application of any of the discussed effective boundary forces reduces the mag-

nitude of the first peak. However, the first density minimum is amplified when the force from Eq. (9) [7] or

those based on (10) [8,9] are applied. The extent of the layering is essentially limited to one cutoff radius but

a slightly increased density persists in the central domain whose magnitude depends on the system size. The

boundary force (13) proposed herein takes the fluid structure into account and includes an attractive part
thus significantly minimizing the density oscillations overall.

5.2. NPBC for a parallel flow of liquid argon

In order to study the capabilities of our scheme to handle dense fluid flows, we use an identical setup as

in the previous section, with the addition that a uniform flow is imposed along the x-axis with

u = 100 m s�1. The computational box is subdivided into 5 · 5 · 3 cells each with volume of 1.67 nm3.

In the USHERUSHER algorithm, the mean potential energy e0 of a particle was a-priori (in a fully periodic simu-
lation) determined to be e0 = �3.612 kJ mol�1 and served as a target energy for particle insertions. The rel-

ative error in the energy was required to be less than 1% and the step size of the USHERUSHER algorithm was

limited to Dsmax = 0.1(q+)�1.5�ArAr = 0.073 nm, as proposed in [20].

We consider three different boundary schemes in the x-direction, while the y- and z-directions are again

chosen to be periodic. The first scheme collects all particles that leave the computational domain and uses

USHERUSHER to reinsert them without any additional measures. The second employs in addition the effective

boundary force Fm (13) and uses the potential Um (14) when inserting particles (Fm and Um are given in

Appendix A). Finally, the third model includes in addition the specular wall as described in Section 3.2.
1 With a standard tail correction applied, cf. [29], one obtains a pressure of P = 554 bar (P+ = 1.32).



Fig. 5. Density profiles of a Lennard–Jones liquid at q = 1.008 g cm�3 and T = 215 K close to specular wall. The following effective

boundary forces are applied —: none, - - - -: [7] (Eq. (9)), - - -: [8] (Eq. (10) with wd), - Æ -: [9] (Eq. (10) with wu), - - - - - -: [12] (Eq. (12)),

– – –: present work (Eq. (13)), —: reference value of 1.008 g cm�3.
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The three schemes have been examined for the same configuration and the density profiles along the flow

direction shown in Fig. 6 demonstrate that the third model minimizes density fluctuations significantly. In

particular, it effectively removes the mean density gradient observed with the other models.

5.3. Hybrid atomistic–continuum flow around a carbon nanotube

The proposed hybrid atomistic–continuum method is further validated in this section, by considering the

flow of liquid argon past a carbon nanotube. We compare the hybrid solution to a reference solution that is

obtained by a purely atomistic simulation of the system. In both cases, the computational domain extends

over 30 · 30 · 4.26 nm and is centered at the origin. The carbon nanotube is of chirality (16,0) with a radius

of r = 0.626 nm and is fixed at the origin with its axis parallel to the z-axis.

The external boundary conditions on oXC are periodic in y and of the Dirichlet type at the left

(oXC|x = �15.0 nm) and right (oXC|x = 15.0 nm) boundaries where a flow velocity of ux = 100 m s�1 and uy = 0
m s�1 is prescribed. These boundary conditions are straightforward to implement in the purely atomistic
Fig. 6. Density profiles of a Lennard–Jones liquid in non-periodic simulations of a uniform flow with mean velocity 100 m s�1, mean

density q = 1.008 g cm�3 and temperature T = 215 K. The missing particles outside the computational domain are replaced by nothing

(- Æ -), by an effective force Fm (� � �), or by Fm and a specular wall (- - -).
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reference simulation, as discussed in Section 3.3. The number of argon atoms for the reference simulation is

NAr = 58268 and results in a density of q = 1.008 g cm�3 in the far-field of the tube. The simulation is equil-

ibrated for 1 ns and then run for another 4 ns to gather statistics. The statistical error in the averaged cell

velocities (1) is estimated to be ± 1.1%, based on the values of r(u) and su given in Section 4.1. During the

whole simulation, the z-component of the particle velocities are weakly coupled to a Berendsen thermostat
[30] at 215 K with a coupling constant 0.1 ps. The computational domain of the atomistic reference solution

and the average velocity in cells of size 0.5 · 0.5 · 4.26nm are shown in Figs. 7(a) and (c).

For the hybrid simulation, the edge length of the atomistic domain is reduced to LA = 10 nm and the

number of atoms to 6400 corresponding to 1/9 of the original system, cf. Fig. 7(b). The finite volume mesh

for the solution of the Navier–Stokes equations in XC consists of cells of size 0.5 · 0.5 · 4.26 nm and over-

laps the atomistic domain by four cell widths, i.e., by LO = 2.0 nm. We arbitrarily choose a uniform velocity

with ux = 100 m s�1 and uy = 0 m s�1 as an initial guess for the internal boundary condition on CC. Hence,

the solution for the velocity field u0C in the first iteration is a parallel flow.
In Fig. 8, we show the evolution of the ux velocity component during the iteration along the x- and the

y-axis. The noise introduced in the hybrid solution through the atomistic domain prevents the solutions to

fully converge. Nevertheless, the profiles are generally in close agreement with the reference solution (solid

line) after approximately 20 iterations and do not change more than expected from the noise amplitude. In
Fig. 7. (a) Computational domain for the reference solution of the flow of argon around a carbon nanotube using a purely atomistic

description. (b) Hybrid atomistic/continuum computational domain. Both computational domains have an extent of 30 · 30 nm.

(c) Velocity field for the reference solution averaged over 4 ns. The white lines are streamlines, and the black lines are contours of the

speed (|u|). (d) Velocity field of the hybrid solution after 50 iterations. The black square denotes the location of CA. The solution in XA

is averaged over 10 iterations.



Fig. 8. The ux velocity component along the x-axis and along the y-axis in the course of a hybrid iterative solution of the flow around a

carbon nanotube. The shear viscosity m for the continuum solution is 0.8 · 10�7 m2 s�1. The solid lines are the velocity components as

obtained from a purely atomistic simulation. The symbols denote the kth iteration with k = 1 (+), 10 (*), 20 (h), 30 (n), 40 (�), and

50 (�), respectively.
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fact, as proposed in [4], the optimal way to schedule the number of molecular dynamics steps Nk in iteration

k should scale as Nk � K�k, where 0 < K < 1 is a positive constant. In this way, the statistical error in the
boundary condition CC is decreased as the iteration proceeds. Here we did not use such a technique, but the

atomistic system is in every iteration run for 40,000 steps whereof the second half is used to determine

the next boundary condition on CC. The velocity profile along the x-axis from the inlet towards the stag-

nation point in front of the carbon nanotube is in good agreement with the reference solution, cf. Fig. 8. We

observe differences in the ux velocity in the wake behind the tube and along the y-axis (Fig. 8). These

differences are quantified in the following.

The convergence of the hybrid solution towards the reference solution is depicted in Fig. 9 in terms of the

error ek (1) and the rate of change of the velocity field dk (3). The error ek levels off at a value of �4% after
20 iterations. We have investigated the effect of prolonging the equilibration (40,000 steps) and sampling

(60,000 steps) times of the atomistic part of the iteration. The rate of change dk is reduced, however, the

error ek is not further decreased as can be seen in Fig. 9. We attribute the persistent error to several sources.

First of all, the statistical error in the reference solution itself amounts to � ± 1.1%. Second, the spatial res-

olution of 0.5 · 0.5 · 4.26 nm of the finite volume grid and of the cells in CA may not fully resolve the large

velocity gradients present around the tube (Fig. 8). Third, the viscosity m obtained from Rowley and Painter

[26] has an uncertainty of ±17.2%. The implications of this point are further discussed below. We note that

despite the 4% error, there is good agreement between the reference and the hybrid solution, cf. Figs. 7(c)
and (d).
Fig. 9. Left: Convergence of the hybrid velocity field towards the MD reference solution in terms of the mean, normalized cell-error

Eq. (1). Right: Rate of change (Eq. (3)) of the velocity field in the hybrid solution. In the first fifty iterations (+), the cell velocities are

averaged over 2 · 104 MD steps, while in the subsequent 25 iterations (·), the cell velocities are averaged over 6 · 104 time steps.
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The mass in the hybrid solution is conserved since the number of particles in XA is constant and since the

constraint (26) is enforced. On the other hand, momentum conservation is not explicitly ensured in the

Schwarz method. In order to assess the accuracy in momentum conservation of the proposed method

we evaluated the drag force on the tube using two different methods. In the first method we computed

the drag force on the tube using a surface integral of the stress tensor:
Fig. 10

bound

right b

gradien

(|u|).
DC
i ¼

Z
S

�pdij þ mq
oui
oxj

þ ouj
oxi

� �
� quiuj

� �
nj dA; ð27Þ
where the surface S in XC comprises the entire atomistic domain and where index notation has been used.
The expression (27) evaluated for the velocity field in the 50th iteration of the hybrid solution yields

DC
x ¼ 262:5 kJ mol�1 nm�1. The drag force on the tube in the same step of the iteration can also be mea-

sured by computing the forces exerted on its atoms. A value of DA
x ¼ 261� 6 kJ mol�1 nm�1 is obtained

from 104 samples taken every 0.5 ps of a prolongated simulation, where the velocity boundary conditions

of the 50th iteration are constantly applied. We remark that the prolongation of the atomistic simulation

decreases the statistical error in measuring DA
x whose instantaneous values have a large standard

deviation of 636.5kJmol�1nm�1. This reasonable agreement in the values of DA
x ¼ 261�

6 and DC
x ¼ 262:5 kJ mol�1 nm�1 represents a measure of momentum conservation for the proposed meth-

odology. As a comparison, we have also computed the Stokes–Oseen drag force DSO
x ¼ 203 kJ mol�1 nm�1

for a flow past an array of two-dimensional circular cylinders (see [3] and the references therein). The value

of DSO
x lies within 21% of DA

x and indicates that the flow pattern of the hybrid solution is similar to the

Stokes–Oseen flow. Note that with periodic external boundary conditions in y and uniform Dirichlet

boundary conditions in x, we are effectively simulating the flow past an array of CNTs and not past a single

CNT. The hybrid atomistic–continuum scheme allows us to implement other external boundary conditions

than the ones used in the reference atomistic simulation. As an example, we replaced the Dirichlet boundary

conditions at oXC|x = 15.0 nm with an outlet boundary condition that extrapolates the velocity and pressure
to the boundary on the assumption of zero gradients along the mesh lines, and that adjusts the velocities to

satisfy overall continuity [24]. This choice together with the periodicity in y models the flow past a row of

CNTs. In Fig. 10, we show that these boundary conditions result in a flow field which is qualitatively
. Comparison of different external boundary conditions for the flow past a carbon nanotube. For both systems, periodic

ary conditions are prescribed in the y-direction and a uniform inlet flow with u = 100 m s�1 is imposed on the left boundary. The

oundary is either given by a uniform outlet flow velocity of u = 100 m s�1 (left picture) or by an outlet condition where zero

ts are assumed along the mesh lines (right picture). The white lines are streamlines, and the black lines are contours of the speed
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different to the one obtained with periodic boundary conditions.The freedom allowed in the hybrid

scheme to impose arbitrary boundary conditions is an advantage over pure atomistic simulations, since

for the latter it is not clear how to implement such outlet conditions.
6. Summary and conclusions

We have presented a novel hybrid scheme that embeds a Molecular Dynamics simulation of a dense Len-

nard–Jones fluid within a two-dimensional, steady, isothermal, incompressible, continuum fluid mechanics

computation. The proposed scheme allows for the first time the atomistic–continuum simulation of dense

non-periodic flow fields.

The scheme is formulated in the context of a domain decomposition Schwarz alternating algorithm and

requires the extraction and imposition of suitable boundary conditions in the respective subdomains. In
order to enforce boundary conditions to the atomistic domain as they are dictated by the continuum, a

boundary model is proposed based on an effective boundary potential, specular walls, body forcing terms,

and a particle insertion algorithm. The resulting algorithm allows to impose general, non-periodic velocity

boundary conditions to the atomistic domain. The boundary model was successfully validated for a hybrid

system of a dense fluid in thermodynamic equilibrium and in a uniform parallel flow.

For the coupling of the flow field to the continuum as determined by the atomistic domain, the proposed

algorithm requires only velocity boundary conditions. These are substantially easier to extract from the

molecular dynamics trajectory than the momentum flux tensor which is needed for flux-based schemes.
We have applied the hybrid scheme to study the flow of liquid argon around a carbon nanotube where

the far field of the tube was modeled as a continuum. The resulting flow field was found to be in good agree-

ment with the one obtained for a fully atomistic reference solution. Moreover, we have applied outlet

boundary conditions on the external boundary of the continuum and we have shown that this has a signif-

icant effect on the flow field. In addition the hybrid scheme allows the imposition of general far-field flow

boundary conditions whereas in purely atomistic simulations it is not easy to enforce equivalent outlet

boundary conditions. Ongoing work considers the extension of the scheme to allow for more complex fluids

such as water. The simulation of water flows would require new efficient molecule insertion algorithm for
bonded polyatomic molecules and the formulation of an effective boundary force, in order to properly

account for the molecule orientation and the effect of the long range electrostatic interaction.
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Appendix A

We here describe the procedure to evaluate the integrals (13) and (14) in an MD simulation. We perform

an equilibrium MD simulation in a periodic box at the state point (q+ = 0.6 and T+ = 1.8) and sample the
mean force felt by a particle k from all particles j with distance xij P rw and rij 6 rc. The samples are col-

lected in 200 bins of equal width (0.05 Å) until all have 3 · 106 entries. A piecewise C1 continuous low order

polynomial is fit to the data with the requirements that F mðrcÞ ¼ 0; F 0
mðrcÞ ¼ 0; and F 0

mð0Þ ¼ 0
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F mðrwÞ ¼

F m1
ðrwÞ for 0:0000 < rw < 0:2975 nm;

F m2
ðrwÞ for 0:2975 < rw < 0:3475 nm;

F m3
ðrwÞ for 0:3475 < rw < 0:3975 nm;

F m4
ðrwÞ for 0:3975 < rw < 1:0000 nm;

8>>><
>>>:

ðA:1Þ
where (in units of kJ mol�1 nm�1)
F m1
ðrwÞ ¼ 10:8007þ 0:860717rw � 172:468r2w þ 86:9134r3w � 140:214r4w;

F m2
ðrwÞ ¼ �3621:30þ 44657:4rw � 204844:0r2w þ 414123:0r3w � 311674:0r4w;

F m3
ðrwÞ ¼ 4331:63� 45188:5rw þ 176236:0r2w � 305157:0r3w þ 198111:0r4w;

F m4
ðrwÞ ¼ �94:4796þ 576:282rw � 1436:11r2w þ 1804:53r3w � 1133:47r4w þ 283:244r5w:
Note that the relation Fm(rw) = �oUm(rw)/orw does not hold. It is therefore necessary to measure Um(rw)

separately, and we obtain the following fit to the data
UmðrwÞ ¼
Um1

ðrwÞ for 0:0000 < rw < 0:2975 nm;

Um2
ðrwÞ for 0:2975 < rw < 0:4975 nm;

Um3
ðrwÞ for 0:4975 < rw < 1:0000 nm;

8><
>: ðA:2Þ
where
Um1
ðrwÞ ¼ �3:61052 þ 7:63385rw;

Um2
ðrwÞ ¼ 9:75231� 137:022rw þ 571:665r2w � 970:06r3w þ 589:472r4w;

Um3
ðrwÞ ¼ �3:45593 þ 13:5024rw � 20:1245r2w þ 13:5656r3w � 3:48753r4w:
The consistency of the boundary force (A.1) with the pressure in the simulation is excellent, i.e., PU, eval-

uated at the wall according to Eq. (8) yields PU = 207 bar ðPþ
U ¼ 0:49Þ, which lies within 1% of the virial

part of the bulk pressure measured in a separate periodic control system at the same state point.
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